For instance, you can create a Top Two Box variable from a 7-point agreement scale question. Function returns a labelled double binary variable, which will have value label attributes.
Variable to be passed through
Character string to specify which end of spectrum to take values
valid inputs are "top" and "bottom".
integer value indicating the n to take values from, e.g. 'top n box' or 'bottom n box'
numeric vector. These values from the variable are replaced
with NA_real_
.
string vector of length 3 containing the labels for the output binary variable. The first value maps to 1 (box selected), the second value maps to 0 (box not selected), and the third values maps to missing values.
string to be used as the variable label, passed through to
set_varl()
.
numeric value or NULL, defaults to 99. When set to a number,
this is the number that is used to represent missing values. When set to
NULL, missing values would be stored as NA_real_
type.
a binary variable of labelled double type.
box_it(sample(1:10,100,replace = TRUE)) # Converted to binary variable where 9, 10 are selected
#> Converted to binary variable where 9, 10 are selected
#> <labelled<double>[100]>
#> [1] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
#> [38] 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0
#> [75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0
#>
#> Labels:
#> value label
#> 1 Selected
#> 0 Not selected
#> 99 Missing value
box_it(sample(c(1:10, NA),100,replace = TRUE))
#> Converted to binary variable where 9, 10 are selected
#> <labelled<double>[100]>
#> [1] NA 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 NA 0 NA 1 0 0 0 0
#> [26] 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
#> [51] 0 0 1 1 1 1 0 1 0 0 0 0 1 0 NA NA 0 0 0 0 0 0 0 0 0
#> [76] 0 0 1 0 0 1 0 1 1 NA 0 0 NA 0 NA 0 1 1 1 NA 0 0 0 1 0
#>
#> Labels:
#> value label
#> 1 Selected
#> 0 Not selected
#> 99 Missing value
# Example where specified numeric values are replaced with NAs
summary(
box_it(
sample(c(1:10, 99), 100, replace = TRUE),
replace_na = 99)
)
#> Converted to binary variable where 9, 10 are selected
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> 0.0000 0.0000 0.0000 0.1935 0.0000 1.0000 7