Function to create a loadings file from the factanal() output

extract_fa_loads(fa_object)

Arguments

fa_object

factanal() model

Examples

fa_output <- factanal(tidyr::drop_na(psych::bfi), factors = 6)
extract_fa_loads(fa_output)
#> 
#> ── Column specification ────────────────────────────────────────────────────────
#> cols(
#>   Variable = col_character(),
#>   Factor1 = col_double(),
#>   Factor2 = col_double(),
#>   Factor3 = col_double(),
#>   Factor4 = col_double(),
#>   Factor5 = col_double(),
#>   Factor6 = col_double(),
#>   loadings_max = col_character()
#> )
#>     Variable       Factor1      Factor2       Factor3      Factor4     Factor5
#> 1         A1  0.0711590149 -0.339951226  0.0669161832 -0.057568671  0.01275224
#> 2         A2  0.0519531898  0.605869311  0.1058123044 -0.101956033  0.02942592
#> 3         A3  0.0029036043  0.671608560  0.0958360380 -0.133477189  0.10337555
#> 4         A4 -0.0688209092  0.482036406  0.2137733287 -0.081336349 -0.09360168
#> 5         A5 -0.1488127713  0.623984721  0.0753613480 -0.182919732  0.14136974
#> 6         C1 -0.0006847579  0.064943444  0.5406391769 -0.005084823  0.22054557
#> 7         C2  0.0593314874  0.149095035  0.6481715754  0.077898168  0.14104300
#> 8         C3 -0.0374376731  0.128019764  0.5444598609 -0.002322279  0.00162228
#> 9         C4  0.1832830681  0.007863373 -0.6488041425  0.173179433 -0.01106893
#> 10        C5  0.2516459147 -0.084818958 -0.5579928015  0.215590736  0.04883687
#> 11        E1 -0.0041359563 -0.260308660  0.0547136782  0.557385722 -0.10412098
#> 12        E2  0.2104102671 -0.295158619 -0.0862208159  0.625601473 -0.12858140
#> 13        E3 -0.0132316840  0.426629205  0.0890809008 -0.341982404  0.41782921
#> 14        E4 -0.1440359012  0.532501531  0.0902679840 -0.469009582  0.06629820
#> 15        E5  0.0591000085  0.235081619  0.3022317000 -0.430115845  0.27338350
#> 16        N1  0.8134706727 -0.131758583 -0.0506763177 -0.092482546 -0.03911919
#> 17        N2  0.8125421672 -0.151019098 -0.0282003399 -0.082679961 -0.01139817
#> 18        N3  0.7054047305  0.016356396 -0.0639145377  0.128450387  0.02031393
#> 19        N4  0.5364909322 -0.067829901 -0.1762405906  0.412011930  0.06569517
#> 20        N5  0.5075943251  0.122126674 -0.0568461268  0.237674736 -0.14660485
#> 21        O1 -0.0399416282  0.079115632  0.1278887084 -0.091966747  0.56080011
#> 22        O2  0.1495753807  0.174849759 -0.1089290917  0.057611706 -0.40327844
#> 23        O3  0.0031438557  0.167023399  0.0705494463 -0.163875437  0.65569700
#> 24        O4  0.1920094956  0.050313668 -0.0405655509  0.270449225  0.33338589
#> 25        O5  0.0452679889  0.082722955 -0.0615476073  0.044603815 -0.46410224
#> 26    gender  0.1538844271  0.244555827  0.0705722614 -0.083996152 -0.18749836
#> 27 education -0.0254132934 -0.001292035 -0.0005026964  0.029150536  0.11030922
#> 28       age -0.0746619538  0.047945490  0.0616984955 -0.036541434  0.01672351
#>         Factor6 loadings_max
#> 1   0.492574451      Factor6
#> 2  -0.295453121      Factor2
#> 3  -0.099440471      Factor2
#> 4  -0.030406968      Factor2
#> 5   0.005777041      Factor2
#> 6   0.009427028      Factor3
#> 7   0.074424301      Factor3
#> 8  -0.026113959      Factor3
#> 9   0.282739400      Factor6
#> 10  0.052368676      Factor1
#> 11  0.089479507      Factor4
#> 12  0.007971457      Factor4
#> 13  0.148449773      Factor2
#> 14  0.184849152      Factor2
#> 15 -0.016776015      Factor3
#> 16  0.121089554      Factor1
#> 17  0.023037901      Factor1
#> 18  0.096059068      Factor1
#> 19  0.037985740      Factor1
#> 20  0.093484052      Factor1
#> 21  0.008848701      Factor5
#> 22  0.266814482      Factor6
#> 23 -0.035899368      Factor5
#> 24 -0.113649349      Factor5
#> 25  0.344124951      Factor6
#> 26 -0.187131474      Factor2
#> 27 -0.200144740      Factor5
#> 28 -0.258983339      Factor3