This function allows you to scale vectors or an entire data frame using the max-min scaling method A numeric vector is always returned.

maxmin(x)

Arguments

x

Pass a vector or the required columns of a data frame through this argument.

Examples

library(magrittr)
library(dplyr)

rand <- rnorm(100, mean = 0, sd = 1)
data.frame(original = rand, transformed = maxmin(rand))
#>         original transformed
#> 1    0.544486103   0.7066675
#> 2    0.461272735   0.6891376
#> 3   -1.487765109   0.2785506
#> 4   -0.691952682   0.4461976
#> 5    0.006885965   0.5934159
#> 6   -0.154013286   0.5595206
#> 7   -0.058929590   0.5795511
#> 8   -0.532580725   0.4797711
#> 9    1.079072266   0.8192842
#> 10   0.874615307   0.7762130
#> 11  -0.666018439   0.4516609
#> 12  -1.126275927   0.3547024
#> 13  -0.369435645   0.5141394
#> 14  -1.181595059   0.3430488
#> 15   0.059317620   0.6044612
#> 16  -1.831619941   0.2061136
#> 17   0.813739647   0.7633888
#> 18  -1.484822319   0.2791705
#> 19  -1.424922124   0.2917892
#> 20   1.936921946   1.0000000
#> 21   0.688422563   0.7369894
#> 22   0.324335193   0.6602902
#> 23  -0.138836622   0.5627178
#> 24  -1.183645124   0.3426169
#> 25   1.612366609   0.9316287
#> 26  -0.643163786   0.4564755
#> 27  -1.165716088   0.3463939
#> 28   0.313530113   0.6580140
#> 29   0.548406090   0.7074933
#> 30  -1.257388469   0.3270820
#> 31   1.000885458   0.8028132
#> 32   0.313166147   0.6579373
#> 33  -0.980530030   0.3854054
#> 34  -1.065758393   0.3674511
#> 35  -1.013986765   0.3783574
#> 36  -1.366631361   0.3040688
#> 37  -1.767504531   0.2196203
#> 38  -0.565150868   0.4729098
#> 39  -0.258543887   0.5375001
#> 40   1.631227565   0.9356020
#> 41   0.324885119   0.6604060
#> 42  -1.057615517   0.3691665
#> 43  -1.365557250   0.3042951
#> 44   0.355476659   0.6668505
#> 45  -0.672844030   0.4502230
#> 46   0.403145968   0.6768926
#> 47   0.333291660   0.6621770
#> 48   1.477891118   0.9032999
#> 49  -0.011129994   0.5896206
#> 50  -0.678476313   0.4490365
#> 51  -0.358565398   0.5164294
#> 52   0.601616617   0.7187027
#> 53  -0.750484984   0.4338671
#> 54  -0.396539336   0.5084297
#> 55  -1.926524635   0.1861209
#> 56  -2.205903683   0.1272665
#> 57   1.432228406   0.8936805
#> 58  -0.239728922   0.5414636
#> 59  -0.029360222   0.5857802
#> 60  -2.810031833   0.0000000
#> 61  -0.694158894   0.4457328
#> 62   0.131521920   0.6196719
#> 63   0.327751356   0.6610098
#> 64   1.436151593   0.8945070
#> 65  -1.328722309   0.3120548
#> 66   0.175713636   0.6289814
#> 67   0.526609210   0.7029015
#> 68  -0.172499556   0.5556263
#> 69   0.167689637   0.6272910
#> 70   1.176533063   0.8398154
#> 71   1.525468782   0.9133227
#> 72  -0.564557686   0.4730348
#> 73   0.296297717   0.6543838
#> 74  -0.249213034   0.5394657
#> 75  -0.207099603   0.5483374
#> 76   0.822056628   0.7651409
#> 77   0.703638224   0.7401947
#> 78  -0.157714759   0.5587409
#> 79  -0.176803539   0.5547196
#> 80   1.422535845   0.8916387
#> 81  -1.316708410   0.3145856
#> 82  -0.061337713   0.5790438
#> 83   0.095596030   0.6121037
#> 84  -0.542940416   0.4775887
#> 85   0.498453635   0.6969702
#> 86  -0.041877501   0.5831433
#> 87   0.495870854   0.6964261
#> 88   0.900931706   0.7817568
#> 89   1.619379507   0.9331061
#> 90   0.378967153   0.6717990
#> 91  -0.168917484   0.5563809
#> 92  -0.542436733   0.4776948
#> 93  -1.453846433   0.2856959
#> 94   0.180349350   0.6299579
#> 95   0.497889684   0.6968514
#> 96  -1.293158928   0.3195466
#> 97   0.754753609   0.7509627
#> 98  -0.267332501   0.5356486
#> 99   0.642080562   0.7272269
#> 100 -0.417326371   0.5040507

iris %>% mutate(Petal.Length2 = maxmin(Petal.Length))
#>     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species Petal.Length2
#> 1            5.1         3.5          1.4         0.2     setosa    0.06779661
#> 2            4.9         3.0          1.4         0.2     setosa    0.06779661
#> 3            4.7         3.2          1.3         0.2     setosa    0.05084746
#> 4            4.6         3.1          1.5         0.2     setosa    0.08474576
#> 5            5.0         3.6          1.4         0.2     setosa    0.06779661
#> 6            5.4         3.9          1.7         0.4     setosa    0.11864407
#> 7            4.6         3.4          1.4         0.3     setosa    0.06779661
#> 8            5.0         3.4          1.5         0.2     setosa    0.08474576
#> 9            4.4         2.9          1.4         0.2     setosa    0.06779661
#> 10           4.9         3.1          1.5         0.1     setosa    0.08474576
#> 11           5.4         3.7          1.5         0.2     setosa    0.08474576
#> 12           4.8         3.4          1.6         0.2     setosa    0.10169492
#> 13           4.8         3.0          1.4         0.1     setosa    0.06779661
#> 14           4.3         3.0          1.1         0.1     setosa    0.01694915
#> 15           5.8         4.0          1.2         0.2     setosa    0.03389831
#> 16           5.7         4.4          1.5         0.4     setosa    0.08474576
#> 17           5.4         3.9          1.3         0.4     setosa    0.05084746
#> 18           5.1         3.5          1.4         0.3     setosa    0.06779661
#> 19           5.7         3.8          1.7         0.3     setosa    0.11864407
#> 20           5.1         3.8          1.5         0.3     setosa    0.08474576
#> 21           5.4         3.4          1.7         0.2     setosa    0.11864407
#> 22           5.1         3.7          1.5         0.4     setosa    0.08474576
#> 23           4.6         3.6          1.0         0.2     setosa    0.00000000
#> 24           5.1         3.3          1.7         0.5     setosa    0.11864407
#> 25           4.8         3.4          1.9         0.2     setosa    0.15254237
#> 26           5.0         3.0          1.6         0.2     setosa    0.10169492
#> 27           5.0         3.4          1.6         0.4     setosa    0.10169492
#> 28           5.2         3.5          1.5         0.2     setosa    0.08474576
#> 29           5.2         3.4          1.4         0.2     setosa    0.06779661
#> 30           4.7         3.2          1.6         0.2     setosa    0.10169492
#> 31           4.8         3.1          1.6         0.2     setosa    0.10169492
#> 32           5.4         3.4          1.5         0.4     setosa    0.08474576
#> 33           5.2         4.1          1.5         0.1     setosa    0.08474576
#> 34           5.5         4.2          1.4         0.2     setosa    0.06779661
#> 35           4.9         3.1          1.5         0.2     setosa    0.08474576
#> 36           5.0         3.2          1.2         0.2     setosa    0.03389831
#> 37           5.5         3.5          1.3         0.2     setosa    0.05084746
#> 38           4.9         3.6          1.4         0.1     setosa    0.06779661
#> 39           4.4         3.0          1.3         0.2     setosa    0.05084746
#> 40           5.1         3.4          1.5         0.2     setosa    0.08474576
#> 41           5.0         3.5          1.3         0.3     setosa    0.05084746
#> 42           4.5         2.3          1.3         0.3     setosa    0.05084746
#> 43           4.4         3.2          1.3         0.2     setosa    0.05084746
#> 44           5.0         3.5          1.6         0.6     setosa    0.10169492
#> 45           5.1         3.8          1.9         0.4     setosa    0.15254237
#> 46           4.8         3.0          1.4         0.3     setosa    0.06779661
#> 47           5.1         3.8          1.6         0.2     setosa    0.10169492
#> 48           4.6         3.2          1.4         0.2     setosa    0.06779661
#> 49           5.3         3.7          1.5         0.2     setosa    0.08474576
#> 50           5.0         3.3          1.4         0.2     setosa    0.06779661
#> 51           7.0         3.2          4.7         1.4 versicolor    0.62711864
#> 52           6.4         3.2          4.5         1.5 versicolor    0.59322034
#> 53           6.9         3.1          4.9         1.5 versicolor    0.66101695
#> 54           5.5         2.3          4.0         1.3 versicolor    0.50847458
#> 55           6.5         2.8          4.6         1.5 versicolor    0.61016949
#> 56           5.7         2.8          4.5         1.3 versicolor    0.59322034
#> 57           6.3         3.3          4.7         1.6 versicolor    0.62711864
#> 58           4.9         2.4          3.3         1.0 versicolor    0.38983051
#> 59           6.6         2.9          4.6         1.3 versicolor    0.61016949
#> 60           5.2         2.7          3.9         1.4 versicolor    0.49152542
#> 61           5.0         2.0          3.5         1.0 versicolor    0.42372881
#> 62           5.9         3.0          4.2         1.5 versicolor    0.54237288
#> 63           6.0         2.2          4.0         1.0 versicolor    0.50847458
#> 64           6.1         2.9          4.7         1.4 versicolor    0.62711864
#> 65           5.6         2.9          3.6         1.3 versicolor    0.44067797
#> 66           6.7         3.1          4.4         1.4 versicolor    0.57627119
#> 67           5.6         3.0          4.5         1.5 versicolor    0.59322034
#> 68           5.8         2.7          4.1         1.0 versicolor    0.52542373
#> 69           6.2         2.2          4.5         1.5 versicolor    0.59322034
#> 70           5.6         2.5          3.9         1.1 versicolor    0.49152542
#> 71           5.9         3.2          4.8         1.8 versicolor    0.64406780
#> 72           6.1         2.8          4.0         1.3 versicolor    0.50847458
#> 73           6.3         2.5          4.9         1.5 versicolor    0.66101695
#> 74           6.1         2.8          4.7         1.2 versicolor    0.62711864
#> 75           6.4         2.9          4.3         1.3 versicolor    0.55932203
#> 76           6.6         3.0          4.4         1.4 versicolor    0.57627119
#> 77           6.8         2.8          4.8         1.4 versicolor    0.64406780
#> 78           6.7         3.0          5.0         1.7 versicolor    0.67796610
#> 79           6.0         2.9          4.5         1.5 versicolor    0.59322034
#> 80           5.7         2.6          3.5         1.0 versicolor    0.42372881
#> 81           5.5         2.4          3.8         1.1 versicolor    0.47457627
#> 82           5.5         2.4          3.7         1.0 versicolor    0.45762712
#> 83           5.8         2.7          3.9         1.2 versicolor    0.49152542
#> 84           6.0         2.7          5.1         1.6 versicolor    0.69491525
#> 85           5.4         3.0          4.5         1.5 versicolor    0.59322034
#> 86           6.0         3.4          4.5         1.6 versicolor    0.59322034
#> 87           6.7         3.1          4.7         1.5 versicolor    0.62711864
#> 88           6.3         2.3          4.4         1.3 versicolor    0.57627119
#> 89           5.6         3.0          4.1         1.3 versicolor    0.52542373
#> 90           5.5         2.5          4.0         1.3 versicolor    0.50847458
#> 91           5.5         2.6          4.4         1.2 versicolor    0.57627119
#> 92           6.1         3.0          4.6         1.4 versicolor    0.61016949
#> 93           5.8         2.6          4.0         1.2 versicolor    0.50847458
#> 94           5.0         2.3          3.3         1.0 versicolor    0.38983051
#> 95           5.6         2.7          4.2         1.3 versicolor    0.54237288
#> 96           5.7         3.0          4.2         1.2 versicolor    0.54237288
#> 97           5.7         2.9          4.2         1.3 versicolor    0.54237288
#> 98           6.2         2.9          4.3         1.3 versicolor    0.55932203
#> 99           5.1         2.5          3.0         1.1 versicolor    0.33898305
#> 100          5.7         2.8          4.1         1.3 versicolor    0.52542373
#> 101          6.3         3.3          6.0         2.5  virginica    0.84745763
#> 102          5.8         2.7          5.1         1.9  virginica    0.69491525
#> 103          7.1         3.0          5.9         2.1  virginica    0.83050847
#> 104          6.3         2.9          5.6         1.8  virginica    0.77966102
#> 105          6.5         3.0          5.8         2.2  virginica    0.81355932
#> 106          7.6         3.0          6.6         2.1  virginica    0.94915254
#> 107          4.9         2.5          4.5         1.7  virginica    0.59322034
#> 108          7.3         2.9          6.3         1.8  virginica    0.89830508
#> 109          6.7         2.5          5.8         1.8  virginica    0.81355932
#> 110          7.2         3.6          6.1         2.5  virginica    0.86440678
#> 111          6.5         3.2          5.1         2.0  virginica    0.69491525
#> 112          6.4         2.7          5.3         1.9  virginica    0.72881356
#> 113          6.8         3.0          5.5         2.1  virginica    0.76271186
#> 114          5.7         2.5          5.0         2.0  virginica    0.67796610
#> 115          5.8         2.8          5.1         2.4  virginica    0.69491525
#> 116          6.4         3.2          5.3         2.3  virginica    0.72881356
#> 117          6.5         3.0          5.5         1.8  virginica    0.76271186
#> 118          7.7         3.8          6.7         2.2  virginica    0.96610169
#> 119          7.7         2.6          6.9         2.3  virginica    1.00000000
#> 120          6.0         2.2          5.0         1.5  virginica    0.67796610
#> 121          6.9         3.2          5.7         2.3  virginica    0.79661017
#> 122          5.6         2.8          4.9         2.0  virginica    0.66101695
#> 123          7.7         2.8          6.7         2.0  virginica    0.96610169
#> 124          6.3         2.7          4.9         1.8  virginica    0.66101695
#> 125          6.7         3.3          5.7         2.1  virginica    0.79661017
#> 126          7.2         3.2          6.0         1.8  virginica    0.84745763
#> 127          6.2         2.8          4.8         1.8  virginica    0.64406780
#> 128          6.1         3.0          4.9         1.8  virginica    0.66101695
#> 129          6.4         2.8          5.6         2.1  virginica    0.77966102
#> 130          7.2         3.0          5.8         1.6  virginica    0.81355932
#> 131          7.4         2.8          6.1         1.9  virginica    0.86440678
#> 132          7.9         3.8          6.4         2.0  virginica    0.91525424
#> 133          6.4         2.8          5.6         2.2  virginica    0.77966102
#> 134          6.3         2.8          5.1         1.5  virginica    0.69491525
#> 135          6.1         2.6          5.6         1.4  virginica    0.77966102
#> 136          7.7         3.0          6.1         2.3  virginica    0.86440678
#> 137          6.3         3.4          5.6         2.4  virginica    0.77966102
#> 138          6.4         3.1          5.5         1.8  virginica    0.76271186
#> 139          6.0         3.0          4.8         1.8  virginica    0.64406780
#> 140          6.9         3.1          5.4         2.1  virginica    0.74576271
#> 141          6.7         3.1          5.6         2.4  virginica    0.77966102
#> 142          6.9         3.1          5.1         2.3  virginica    0.69491525
#> 143          5.8         2.7          5.1         1.9  virginica    0.69491525
#> 144          6.8         3.2          5.9         2.3  virginica    0.83050847
#> 145          6.7         3.3          5.7         2.5  virginica    0.79661017
#> 146          6.7         3.0          5.2         2.3  virginica    0.71186441
#> 147          6.3         2.5          5.0         1.9  virginica    0.67796610
#> 148          6.5         3.0          5.2         2.0  virginica    0.71186441
#> 149          6.2         3.4          5.4         2.3  virginica    0.74576271
#> 150          5.9         3.0          5.1         1.8  virginica    0.69491525

maxmin(iris$Petal.Length)
#>   [1] 0.06779661 0.06779661 0.05084746 0.08474576 0.06779661 0.11864407
#>   [7] 0.06779661 0.08474576 0.06779661 0.08474576 0.08474576 0.10169492
#>  [13] 0.06779661 0.01694915 0.03389831 0.08474576 0.05084746 0.06779661
#>  [19] 0.11864407 0.08474576 0.11864407 0.08474576 0.00000000 0.11864407
#>  [25] 0.15254237 0.10169492 0.10169492 0.08474576 0.06779661 0.10169492
#>  [31] 0.10169492 0.08474576 0.08474576 0.06779661 0.08474576 0.03389831
#>  [37] 0.05084746 0.06779661 0.05084746 0.08474576 0.05084746 0.05084746
#>  [43] 0.05084746 0.10169492 0.15254237 0.06779661 0.10169492 0.06779661
#>  [49] 0.08474576 0.06779661 0.62711864 0.59322034 0.66101695 0.50847458
#>  [55] 0.61016949 0.59322034 0.62711864 0.38983051 0.61016949 0.49152542
#>  [61] 0.42372881 0.54237288 0.50847458 0.62711864 0.44067797 0.57627119
#>  [67] 0.59322034 0.52542373 0.59322034 0.49152542 0.64406780 0.50847458
#>  [73] 0.66101695 0.62711864 0.55932203 0.57627119 0.64406780 0.67796610
#>  [79] 0.59322034 0.42372881 0.47457627 0.45762712 0.49152542 0.69491525
#>  [85] 0.59322034 0.59322034 0.62711864 0.57627119 0.52542373 0.50847458
#>  [91] 0.57627119 0.61016949 0.50847458 0.38983051 0.54237288 0.54237288
#>  [97] 0.54237288 0.55932203 0.33898305 0.52542373 0.84745763 0.69491525
#> [103] 0.83050847 0.77966102 0.81355932 0.94915254 0.59322034 0.89830508
#> [109] 0.81355932 0.86440678 0.69491525 0.72881356 0.76271186 0.67796610
#> [115] 0.69491525 0.72881356 0.76271186 0.96610169 1.00000000 0.67796610
#> [121] 0.79661017 0.66101695 0.96610169 0.66101695 0.79661017 0.84745763
#> [127] 0.64406780 0.66101695 0.77966102 0.81355932 0.86440678 0.91525424
#> [133] 0.77966102 0.69491525 0.77966102 0.86440678 0.77966102 0.76271186
#> [139] 0.64406780 0.74576271 0.77966102 0.69491525 0.69491525 0.83050847
#> [145] 0.79661017 0.71186441 0.67796610 0.71186441 0.74576271 0.69491525